Finite Orders and Their Minimal Strict Completion Lattices
نویسنده
چکیده
Whereas the Dedekind-MacNeille completion D(P ) of a poset P is the minimal lattice L such that every element of L is a join of elements of P, the minimal strict completion D(P )∗ is the minimal lattice L such that the poset of join-irreducible elements of L is isomorphic to P. (These two completions are the same if every element of P is joinirreducible). In this paper we study lattices which are minimal strict completions of finite orders. Such lattices are in one-to-one correspondence with finite posets. Among other results we show that, for every finite poset P, D(P )∗ is always generated by its doubly-irreducible elements. Furthermore, we characterize the posets P for which D(P )∗ is a lower semimodular lattice and, equivalently, a modular lattice.
منابع مشابه
Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]
Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...
متن کاملFaithful extension on finite order classes
In the particular case of finite orders, we investigate the notion of faithful extension among relations introduced in 1971 by R. Fräıssé: an order Q admits a faithful extension relative to an order P if P does not embed into Q and there exists a strict extension of Q into which P still does not embed. For most of the known order classes, we prove that if P and Q belong to a class then Q admits...
متن کاملAlgebraic Properties of Intuitionistic Fuzzy Residuated Lattices
In this paper, we investigate more relations between the symmetric residuated lattices $L$ with their corresponding intuitionistic fuzzy residuated lattice $tilde{L}$. It is shown that some algebraic structures of $L$ such as Heyting algebra, Glivenko residuated lattice and strict residuated lattice are preserved for $tilde{L}$. Examples are given for those structures that do not remain the sam...
متن کاملFUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملFinite atomic lattices and resolutions of monomial ideals
In this paper we primarily study monomial ideals and their minimal free resolutions by studying their associated lcm-lattices. In particular, we formally define the notion of coordinatizing a finite atomic lattice P to produce a monomial ideal whose lcm-lattice is P , and we give a characterization of all such coordinatizations. We prove that all relations in the lattice L(n) of all finite atom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004